Graphical Models

· Oxford Statistical Science Series Book 17 · Clarendon Press
4.0
2 reviews
Ebook
308
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

The idea of modelling systems using graph theory has its origin in several scientific areas: in statistical physics (the study of large particle systems), in genetics (studying inheritable properties of natural species), and in interactions in contingency tables. The use of graphical models in statistics has increased considerably over recent years and the theory has been greatly developed and extended. This book provides the first comprehensive and authoritative account of the theory of graphical models and is written by a leading expert in the field. It contains the fundamental graph theory required and a thorough study of Markov properties associated with various type of graphs. The statistical theory of log-linear and graphical models for contingency tables, covariance selection models, and graphical models with mixed discrete-continous variables in developed detail. Special topics, such as the application of graphical models to probabilistic expert systems, are described briefly, and appendices give details of the multivarate normal distribution and of the theory of regular exponential families. The author has recently been awarded the RSS Guy Medal in Silver 1996 for his innovative contributions to statistical theory and practice, and especially for his work on graphical models.

Ratings and reviews

4.0
2 reviews

About the author

Steffen L. Lauritzen is a Professor in the Department of Mathematics and Computer Science at the University of Aalborg, Denmark and was previously Professor of Statistics at Oxford University.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.