Approximating Integrals via Monte Carlo and Deterministic Methods

·
· Oxford Statistical Science Series Book 20 · OUP Oxford
4.0
2 reviews
Ebook
298
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

This book is designed to introduce graduate students and researchers to the primary methods useful for approximating integrals. The emphasis is on those methods that have been found to be of practical use, and although the focus is on approximating higher- dimensional integrals the lower-dimensional case is also covered. Included in the book are asymptotic techniques, multiple quadrature and quasi-random techniques as well as a complete development of Monte Carlo algorithms. For the Monte Carlo section importance sampling methods, variance reduction techniques and the primary Markov Chain Monte Carlo algorithms are covered. This book brings these various techniques together for the first time, and hence provides an accessible textbook and reference for researchers in a wide variety of disciplines.

Ratings and reviews

4.0
2 reviews

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.