Convection in Liquids

·
· Springer Science & Business Media
Ebook
680
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Both of the authors of this book are disciples and collaborators of the Brussels school of thermodynamics. Their particular domain of competence is the application of numerical methods to the many highly nonlinear problems which have arisen in the context of recent developments in the thermodynamics of irreversi ble processes: stability of states far from equilibrium, search for marginal critical states, bifwrcation phenomena, multiple stationnary states, dissipative structures, etc. These problems cannot in general be handled using only the clas sical and mathematically rigorous methods of the theory of differential, partial differential, and int~grodifferential equations. The present authors demonstrate how approximate methods, re lyi ng usually on powerful computers, lead to significant progress in these areas, if one is prepa red to accept a certain lack of rigor, such as, for example, the lack of proof for the convergence of the series used in the context of problems which are not self adjoint, nor even linear. The results thus obtained must consequently be submit ted to an exacting confrontation with experimental observations. - Even though, the '1 imited information obtained concerning the, often unsuspec ted, mechanisms underlying the observed phenomena is both precious and frequently sufficient. This information results from the properties of the trial functions best suited to the constraints of the problem such as the initial, boundary, and "feedback" conditions, and the analysis of their behavior in the course of the evolution of the system.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.