Numerical Bifurcation Analysis for Reaction-Diffusion Equations

· Springer Series in Computational Mathematics Book 28 · Springer Science & Business Media
Ebook
414
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Reaction-diffusion equations are typical mathematical models in biology, chemistry and physics. These equations often depend on various parame ters, e. g. temperature, catalyst and diffusion rate, etc. Moreover, they form normally a nonlinear dissipative system, coupled by reaction among differ ent substances. The number and stability of solutions of a reaction-diffusion system may change abruptly with variation of the control parameters. Cor respondingly we see formation of patterns in the system, for example, an onset of convection and waves in the chemical reactions. This kind of phe nomena is called bifurcation. Nonlinearity in the system makes bifurcation take place constantly in reaction-diffusion processes. Bifurcation in turn in duces uncertainty in outcome of reactions. Thus analyzing bifurcations is essential for understanding mechanism of pattern formation and nonlinear dynamics of a reaction-diffusion process. However, an analytical bifurcation analysis is possible only for exceptional cases. This book is devoted to nu merical analysis of bifurcation problems in reaction-diffusion equations. The aim is to pursue a systematic investigation of generic bifurcations and mode interactions of a dass of reaction-diffusion equations. This is realized with a combination of three mathematical approaches: numerical methods for con tinuation of solution curves and for detection and computation of bifurcation points; effective low dimensional modeling of bifurcation scenario and long time dynamics of reaction-diffusion equations; analysis of bifurcation sce nario, mode-interactions and impact of boundary conditions.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.