Elliptic Differential Equations: Theory and Numerical Treatment, Edition 2

· Springer Series in Computational Mathematics Book 18 · Springer
Ebook
455
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This book has developed from lectures that the author gave for mathematics students at the Ruhr-Universitat Bochum and the Christian-Albrechts-Uni versitat Kiel. This edition is the result of the translation and correction of the German edition entitled Theone und Numenk elliptischer Differential gleichungen. The present work is restricted to the theory of partial differential equa tions of elliptic type, which otherwise tends to be given a treatment which is either too superficial or too extensive. The following sketch shows what the problems are for elliptic differential equations. A: Theory of B: Discretisation: c: Numerical analysis elliptic Difference Methods, convergence, equations finite elements, etc. stability Elliptic Discrete boundary value equations f-------- ----- problems E:Theory of D: Equation solution: iteration Direct or with methods iteration methods The theory of elliptic differential equations (A) is concerned with ques tions of existence, uniqueness, and properties of solutions. The first problem of VI Foreword numerical treatment is the description of the discretisation procedures (B), which give finite-dimensional equations for approximations to the solu tions. The subsequent second part of the numerical treatment is numerical analysis (0) of the procedure in question. In particular it is necessary to find out if, and how fast, the approximation converges to the exact solution.

About the author

The author is a very well-known author of Springer, working in the field of numerical mathematics for partial differential equations and integral equations. He has published numerous books in the SSCM series, e.g., about the multi-grid method, about the numerical analysis of elliptic pdes, about iterative solution of large systems of equation, and a book in German about the technique of hierarchical matrices. Hackbusch is member of the editorial board of Springer' s book series "Advances in Numerical Mathematics", "The International Cryogenics Monograph Series" and "Springer Series of Computational Mathematics".

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.