Winding Around

· Student Mathematical Library 76. kniha · American Mathematical Soc.
E‑kniha
269
Počet strán
Hodnotenia a recenzie nie sú overené  Ďalšie informácie

Táto e‑kniha

The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra),guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem),explain why every simple closed curve has an inside and an outside (the Jordan curve theorem),relate calculus to curvature and the singularities of vector fields (the Hopf index theorem),allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators),generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem).

All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses.

 

O autorovi

Nothing provided

Ohodnoťte túto elektronickú knihu

Povedzte nám svoj názor.

Informácie o dostupnosti

Smartfóny a tablety
Nainštalujte si aplikáciu Knihy Google Play pre AndroidiPad/iPhone. Automaticky sa synchronizuje s vaším účtom a umožňuje čítať online aj offline, nech už ste kdekoľvek.
Laptopy a počítače
Audioknihy zakúpené v službe Google Play môžete počúvať prostredníctvom webového prehliadača v počítači.
Čítačky elektronických kníh a ďalšie zariadenia
Ak chcete tento obsah čítať v zariadeniach využívajúcich elektronický atrament, ako sú čítačky e‑kníh Kobo, musíte stiahnuť príslušný súbor a preniesť ho do svojho zariadenia. Pri prenose súborov do podporovaných čítačiek e‑kníh postupujte podľa podrobných pokynov v centre pomoci.