Algebraic and Strong Splittings of Extensions of Banach Algebras

· ·
· American Mathematical Society: Memoirs of the American Mathematical Society Book 656 · American Mathematical Soc.
Ebook
113
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In this volume, the authors address the following: Let $A$ be a Banach algebra, and let $\sum\:\ 0\rightarrow I\rightarrow\frak A\overset\pi\to\longrightarrow A\rightarrow 0$ be an extension of $A$, where $\frak A$ is a Banach algebra and $I$ is a closed ideal in $\frak A$. The extension splits algebraically (respectively, splits strongly) if there is a homomorphism (respectively, continuous homomorphism) $\theta\: A\rightarrow\frak A$ such that $\pi\circ\theta$ is the identity on $A$. Consider first for which Banach algebras $A$ it is true that every extension of $A$ in a particular class of extensions splits, either algebraically or strongly, and second for which Banach algebras it is true that every extension of $A$ in a particular class which splits algebraically also splits strongly. These questions are closely related to the question when the algebra $\frak A$ has a (strong) Wedderburn decomposition. The main technique for resolving these questions involves the Banach cohomology group $\cal H2(A,E)$ for a Banach $A$-bimodule $E$, and related cohomology groups. Later chapters are particularly concerned with the case where the ideal $I$ is finite-dimensional. Results are obtained for many of the standard Banach algebras $A$.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.