Hill's Equation

·
· Courier Corporation
Ebook
138
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The hundreds of applications of Hill's equation in engineering and physics range from mechanics and astronomy to electric circuits, electric conductivity of metals, and the theory of the cyclotron. New applications are continually being discovered and theoretical advances made since Liapounoff established the equation's fundamental importance for stability problems in 1907. Brief but thorough, this volume offers engineers and mathematicians a complete orientation to the subject.
"Hill's equation" connotes the class of homogeneous, linear, second order differential equations with real, periodic coefficients. This two part treatment encompasses the most pertinent, necessary information; only the theory's elementary facts are proved in full, with minimal use of sophisticated mathematics. Part I explains the basic theory: Floquet's theorem, characteristic values and intervals of stability, analytic properties of the discriminant, infinite determinants, asymptotic behavior of the characteristic values, theorems of Liapounoff and Borg, and related topics. Part II examines numerous details: elementary formulas, oscillatory solutions, intervals of stability and instability, discriminant, coexistence, and examples. Particular attention is given to stability problems and to the question of coexistence of periodic solutions.
Although intended for professional mathematicians and engineers, the volume is written so clearly and vigorously that it can be recommended for graduate students and advanced undergraduates.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.