Orthogonal Polynomials and Painlevé Equations

· Australian Mathematical Society Lecture Series Book 27 · Cambridge University Press
Ebook
192
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

There are a number of intriguing connections between Painlevé equations and orthogonal polynomials, and this book is one of the first to provide an introduction to these. Researchers in integrable systems and non-linear equations will find the many explicit examples where Painlevé equations appear in mathematical analysis very useful. Those interested in the asymptotic behavior of orthogonal polynomials will also find the description of Painlevé transcendants and their use for local analysis near certain critical points helpful to their work. Rational solutions and special function solutions of Painlevé equations are worked out in detail, with a survey of recent results and an outline of their close relationship with orthogonal polynomials. Exercises throughout the book help the reader to get to grips with the material. The author is a leading authority on orthogonal polynomials, giving this work a unique perspective on Painlevé equations.

About the author

Walter Van Assche is a professor of mathematics at the Katholieke Universiteit Leuven, Belgium, and presently the Chair of the SIAM Activity Group on Orthogonal Polynomials and Special Functions (OPSF). He is an expert in orthogonal polynomials, special functions, asymptotics, approximation, and recurrence relations.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.