Self-Assembly Processes at Interfaces: Multiscale Phenomena

· Interface Science and Technology Book 21 · Academic Press
Ebook
478
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Self-Assembly Processes at Interfaces: Multiscale Phenomena provides the conceptual and unifying view of adsorption, self-assembly, and grafting processes at solid–liquid and liquid–gas interfaces, also describing experimental methods where applicable. An invaluable resource for (post)-graduate students looking to bridge the gap between acquiring the field's existing knowledge and the creation of new insights, the book recalls fundamental concepts, giving rigorous, but first-principle-based, calculations and exercises, and showing how these concepts have been used in recent research articles. Readers will find guidelines on how best to start research in the field of surface chemistry with biological macromolecules and molecules able to undergo self-assembly process at interfaces in the presence of a liquid, along with discussions on the very fundamental aspects and applications using concepts of biomimetic chemistry. By highlighting the interdisciplinary aspects of the field of self-assembly at interfaces, the book is an ideal resource for chemical engineers, chemists, physicists, and biologists. In addition, important equations are demonstrated on the basis of fundamental concepts, and overly complex mathematical developments are avoided. - Presents an interdisciplinary work that is ideal for chemical engineers, chemists, physicists, and biologists - Provides a unifying view of the field, from fundamentals, to methods and applications - Includes concepts applicable at both solid–liquid and liquid–gas interfaces

About the author

Dr. Vincent Ball is a Professor at the University of Strasbourg, INSERM, Strasbourg, France. He is the recipient of a 2007 Fulbright fellowship, and was an invited researcher at the Michigan University, Ann Arbor, Department of Materials Sciences, Chemical and Biomedical Engineering, and an invited researcher at the Max-Planck-Institut für Polymerforschung, Mainz, Germany.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.