Optimal Control and Geometry: Integrable Systems

· Cambridge Studies in Advanced Mathematics Book 154 · Cambridge University Press
Ebook
437
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.

About the author

Professor Velimir Jurdjevic is one of the founders of geometric control theory. His pioneering work with H. J. Sussmann was deemed to be among the most influential papers of the century and his book, Geometric Control Theory, revealed the geometric origins of the subject and uncovered important connections to physics and geometry. It remains a major reference on non-linear control. Jurdjevic's expertise also extends to differential geometry, mechanics and integrable systems. His publications cover a wide range of topics including stability theory, Hamiltonian systems on Lie groups, and integrable systems. He has spent most of his professional career at the University of Toronto.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.