Variational Problems in Differential Geometry

· ·
· London Mathematical Society Lecture Note Series 394 巻 · Cambridge University Press
電子書籍
217
ページ
評価とレビューは確認済みではありません 詳細

この電子書籍について

The field of geometric variational problems is fast-moving and influential. These problems interact with many other areas of mathematics and have strong relevance to the study of integrable systems, mathematical physics and PDEs. The workshop 'Variational Problems in Differential Geometry' held in 2009 at the University of Leeds brought together internationally respected researchers from many different areas of the field. Topics discussed included recent developments in harmonic maps and morphisms, minimal and CMC surfaces, extremal Kähler metrics, the Yamabe functional, Hamiltonian variational problems and topics related to gauge theory and to the Ricci flow. These articles reflect the whole spectrum of the subject and cover not only current results, but also the varied methods and techniques used in attacking variational problems. With a mix of original and expository papers, this volume forms a valuable reference for more experienced researchers and an ideal introduction for graduate students and postdoctoral researchers.

著者について

Roger Bielawski is Professor of Geometry at the University of Leeds and specializes in gauge theory and hyperkähler geometry.

Kevin Houston is a senior lecturer at the University of Leeds and specializes in singularity theory. He is the author of over twenty published research papers and author of the undergraduate textbook How to Think Like a Mathematician published by Cambridge University Press in 2009.

Martin Speight is Reader in Mathematical Physics at the University of Leeds. He specializes in the applications of differential geometry to theoretical physics, particularly the study of topological solitons.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。