Variational Methods in Shape Optimization Problems

·
· Progress in Nonlinear Differential Equations and Their Applications Βιβλίο 65 · Springer Science & Business Media
5,0
1 κριτική
ebook
216
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

The fascinating ?eld of shape optimization problems has received a lot of attention in recent years, particularly in relation to a number of applications in physics and engineering that require a focus on shapes instead of parameters or functions. The goal of these applications is to deform and modify the admissible shapes in order to comply with a given cost function that needs to be optimized. In this respect the problems are both classical (as the isoperimetric problem and the Newton problem of the ideal aerodynamical shape show) and modern (re?ecting the many results obtained in the last few decades). The intriguing feature is that the competing objects are shapes, i.e., domains of N R , instead of functions, as it usually occurs in problems of the calculus of va- ations. This constraint often produces additional dif?culties that lead to a lack of existence of a solution and to the introduction of suitable relaxed formulations of the problem. However, in certain limited cases an optimal solution exists, due to the special form of the cost functional and to the geometrical restrictions on the class of competing domains.

Βαθμολογίες και αξιολογήσεις

5,0
1 αξιολόγηση

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.