Variance of Topics of Plane Geometry

· Infinite Study
E-boek
114
Pagina's
Geschikt
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

This book contains 21 papers of plane geometry.

It deals with various topics, such as: quasi-isogonal cevians,

nedians, polar of a point with respect to a circle, anti-bisector,

aalsonti-symmedian, anti-height and their isogonal.

A nedian is a line segment that has its origin in a triangle’s vertex

and divides the opposite side in n equal segments.

The papers also study distances between remarkable points in the

2D-geometry, the circumscribed octagon and the inscribable octagon,

the circles adjointly ex-inscribed associated to a triangle, and several

classical results such as: Carnot circles, Euler’s line, Desargues

theorem, Sondat’s theorem, Dergiades theorem, Stevanovic’s

theorem, Pantazi’s theorem, and Newton’s theorem.

Special attention is given in this book to orthological triangles, biorthological

triangles, ortho-homological triangles, and trihomological

triangles.

Each paper is independent of the others. Yet, papers on the same or similar

topics are listed together one after the other.

The book is intended for College and University students and instructors that

prepare for mathematical competitions such as National and International

Mathematical Olympiads, or for the AMATYC (American Mathematical

Association for Two Year Colleges) student competition, Putnam competition,

Gheorghe Ţiţeica Romanian competition, and so on.

The book is also useful for geometrical researchers.

 

Over de auteur

 

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.