This volume contains research articles based on lectures given at the Seventh International Conference on $p$-adic Functional Analysis. The articles, written by leading international experts, provide a complete overview of the latest contributions in basic functional analysis (Hilbert and Banach spaces, locally convex spaces, orthogonality, inductive limits, spaces of continuous functions, strict topologies, operator theory, automatic continuity, measure and integrations, Banach and topological algebras, summability methods, and ultrametric spaces), analytic functions (meromorphic functions, roots of rational functions, characterization of injective holomorphic functions, and Gelfand transforms in algebras of analytic functions), differential equations, Banach-Hopf algebras, Cauchy theory of Levi-Civita fields, finite differences, weighted means, $p$-adic dynamical systems, and non-Archimedean probability theory and stochastic processes. The book is written for graduate students and research mathematicians. It also would make a good reference source for those in related areas, such as classical functional analysis, complex analytic functions, probability theory, dynamical systems, orthomodular spaces, number theory, and representations of $p$-adic groups.