Trends in Optimization: American Mathematical Society Short Course, January 5-6, 2004, Phoeniz, Arizona

· · · ·
· Proceedings of Symposia in Applied Mathematics წიგნი 61 · American Mathematical Soc.
ელწიგნი
140
გვერდი
რეიტინგები და მიმოხილვები დაუდასტურებელია  შეიტყვეთ მეტი

ამ ელწიგნის შესახებ

This volume presents proceedings from the AMS short course, Trends in Optimization 2004, held at the Joint Mathematics Meetings in Phoenix (AZ). It focuses on seven exciting areas of discrete optimization. In particular, Karen Aardal describes Lovasz's fundamental algorithm for producing a short vector in a lattice by basis reduction and H.W. Lenstra's use of this idea in the early 1980s in his polynomial-time algorithm for integer programming in fixed dimension. Aardal's article, lucid presentations of the material. It also contains practical developments using computational tools. Bernd Sturmfels' article, Algebraic recipes for integer programming, discusses how methods of commutative algebra and algebraic combinatorics can be used successfully to attack integer programming problems. Specifically, Grobner bases play a central role in algorithmic theory and practice. Moreover, it is shown that techniques based on short rational functions are bringing new insights, such as in computing the integer programming gap. Overall, these articles, together with five other contributions, make this volume an impressive compilation on the state-of-the-art of optimization. It is suitable for graduate students and researchers interested in discrete optimization.

შეაფასეთ ეს ელწიგნი

გვითხარით თქვენი აზრი.

ინფორმაცია წაკითხვასთან დაკავშირებით

სმარტფონები და ტაბლეტები
დააინსტალირეთ Google Play Books აპი Android და iPad/iPhone მოწყობილობებისთვის. ის ავტომატურად განახორციელებს სინქრონიზაციას თქვენს ანგარიშთან და საშუალებას მოგცემთ, წაიკითხოთ სასურველი კონტენტი ნებისმიერ ადგილას, როგორც ონლაინ, ისე ხაზგარეშე რეჟიმში.
ლეპტოპები და კომპიუტერები
Google Play-ში შეძენილი აუდიოწიგნების მოსმენა თქვენი კომპიუტერის ვებ-ბრაუზერის გამოყენებით შეგიძლიათ.
ელწამკითხველები და სხვა მოწყობილობები
ელექტრონული მელნის მოწყობილობებზე წასაკითხად, როგორიცაა Kobo eReaders, თქვენ უნდა ჩამოტვირთოთ ფაილი და გადაიტანოთ იგი თქვენს მოწყობილობაში. დახმარების ცენტრის დეტალური ინსტრუქციების მიხედვით გადაიტანეთ ფაილები მხარდაჭერილ ელწამკითხველებზე.

სერიის გაგრძელება

მეტი ავტორისგან American Mathematical Society. Short Course

მსგავსი ელწიგნები