Tree Lattices

·
· Progress in Mathematics Buch 176 · Springer Science & Business Media
E-Book
233
Seiten
Bewertungen und Rezensionen werden nicht geprüft  Weitere Informationen

Über dieses E-Book

Group actions on trees furnish a unified geometric way of recasting the chapter of combinatorial group theory dealing with free groups, amalgams, and HNN extensions. Some of the principal examples arise from rank one simple Lie groups over a non-archimedean local field acting on their Bruhat—Tits trees. In particular this leads to a powerful method for studying lattices in such Lie groups.

This monograph extends this approach to the more general investigation of X-lattices G, where X-is a locally finite tree and G is a discrete group of automorphisms of X of finite covolume. These "tree lattices" are the main object of study. Special attention is given to both parallels and contrasts with the case of Lie groups. Beyond the Lie group connection, the theory has application to combinatorics and number theory.

The authors present a coherent survey of the results on uniform tree lattices, and a (previously unpublished) development of the theory of non-uniform tree lattices, including some fundamental and recently proved existence theorems. Non-uniform tree lattices are much more complicated than uniform ones; thus a good deal of attention is given to the construction and study of diverse examples. The fundamental technique is the encoding of tree action in terms of the corresponding quotient "graphs of groups."

Tree Lattices should be a helpful resource to researcher sin the field, and may also be used for a graduate course on geometric methods in group theory.

Dieses E-Book bewerten

Deine Meinung ist gefragt!

Informationen zum Lesen

Smartphones und Tablets
Nachdem du die Google Play Bücher App für Android und iPad/iPhone installiert hast, wird diese automatisch mit deinem Konto synchronisiert, sodass du auch unterwegs online und offline lesen kannst.
Laptops und Computer
Im Webbrowser auf deinem Computer kannst du dir Hörbucher anhören, die du bei Google Play gekauft hast.
E-Reader und andere Geräte
Wenn du Bücher auf E-Ink-Geräten lesen möchtest, beispielsweise auf einem Kobo eReader, lade eine Datei herunter und übertrage sie auf dein Gerät. Eine ausführliche Anleitung zum Übertragen der Dateien auf unterstützte E-Reader findest du in der Hilfe.