Toric Topology

·
· Mathematical Surveys and Monographs Livro 204 · American Mathematical Soc.
Livro eletrónico
518
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

This book is about toric topology, a new area of mathematics that emerged at the end of the 1990s on the border of equivariant topology, algebraic and symplectic geometry, combinatorics, and commutative algebra. It has quickly grown into a very active area with many links to other areas of mathematics, and continues to attract experts from different fields.

The key players in toric topology are moment-angle manifolds, a class of manifolds with torus actions defined in combinatorial terms. Construction of moment-angle manifolds relates to combinatorial geometry and algebraic geometry of toric varieties via the notion of a quasitoric manifold. Discovery of remarkable geometric structures on moment-angle manifolds led to important connections with classical and modern areas of symplectic, Lagrangian, and non-Kaehler complex geometry. A related categorical construction of moment-angle complexes and polyhedral products provides for a universal framework for many fundamental constructions of homotopical topology. The study of polyhedral products is now evolving into a separate subject of homotopy theory. A new perspective on torus actions has also contributed to the development of classical areas of algebraic topology, such as complex cobordism.

This book includes many open problems and is addressed to experts interested in new ideas linking all the subjects involved, as well as to graduate students and young researchers ready to enter this beautiful new area.

 

Acerca do autor

Victor M. Buchstaber, Steklov Mathematical Institute, Moscow, Russia, and Taras E. Panov, Moscow State University, Russia

 

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.