Topology and Maps

· Mathematical Concepts and Methods in Science and Engineering Livre 5 · Springer Science & Business Media
E-book
337
Pages
Les notes et avis ne sont pas vérifiés. En savoir plus

À propos de cet e-book

This work is suitable for undergraduate students as well as advanced students and research workers. It consists of ten chapters, the first six of which are meant for beginners and are therefore suitable for undergraduate students; Chapters VII-X are suitable for advanced students and research workers interested in functional analysis. This book has two special features: First, it contains generalizations of continuous maps on topological spaces, e. g. , almost continuous maps, nearly continuous maps, maps with closed graph, graphically continuous maps, w-continuous maps, and a-continuous maps, etc. and some of their properties. The treatment of these notions appears here, in Chapter VII, for the first time in book form. The second feature consists in some not-so-easily-available nuptial delights that grew out of the marriage of topology and functional analysis; they are topics mainly courted by functional analysts and seldom given in topology books. Specifically, one knows that the set C(X) of all real- or com plex-valued continuous functions on a completely regular space X forms a locally convex topological algebra, a fortiori a topological vector space, in the compact-open topology. A number of theorems are known: For example, C(X) is a Banach space iff X is compact, or C(X) is complete iff X is a kr-space, and so on. Chapters VIII and X include this material, which, to the regret of many interested readers has not previously been available in book form (a recent publication (Weir [\06]) does, however, contain some material of our Chapter X).

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.