Theory of Automata

· Elsevier
Е-книга
276
Страници
Соодветна
Оцените и рецензиите не се потврдени  Дознајте повеќе

За е-книгава

Theory of Automata deals with mathematical aspects of the theory of automata theory, with emphasis on the finite deterministic automaton as the basic model. All other models, such as finite non-deterministic and probabilistic automata as well as pushdown and linear bounded automata, are treated as generalizations of this basic model. The formalism chosen to describe finite deterministic automata is that of regular expressions. A detailed exposition regarding this formalism is presented by considering the algebra of regular expressions. This volume is comprised of four chapters and begins with a discussion on finite deterministic automata, paying particular attention to regular and finite languages; analysis and synthesis theorems; equivalence relations induced by languages; sequential machines; sequential functions and relations; definite languages and non-initial automata; and two-way automata. The next chapter describes finite non-deterministic and probabilistic automata and covers theorems concerning stochastic languages; non-regular stochastic languages; and probabilistic sequential machines. The book then introduces the reader to the algebra of regular expressions before concluding with a chapter on formal languages and generalized automata. Theoretical exercises are included, along with ""problems"" at the end of some sections. This monograph will be a useful resource for beginning graduate or advanced undergraduates of mathematics.

Оценете ја е-книгава

Кажете ни што мислите.

Информации за читање

Паметни телефони и таблети
Инсталирајте ја апликацијата Google Play Books за Android и iPad/iPhone. Автоматски се синхронизира со сметката и ви овозможува да читате онлајн или офлајн каде и да сте.
Лаптопи и компјутери
Може да слушате аудиокниги купени од Google Play со користење на веб-прелистувачот на компјутерот.
Е-читачи и други уреди
За да читате на уреди со е-мастило, како што се е-читачите Kobo, ќе треба да преземете датотека и да ја префрлите на уредот. Следете ги деталните упатства во Центарот за помош за префрлање на датотеките на поддржани е-читачи.