Theory of Automata

· Elsevier
ebook
276
Σελίδες
Κατάλληλο
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Theory of Automata deals with mathematical aspects of the theory of automata theory, with emphasis on the finite deterministic automaton as the basic model. All other models, such as finite non-deterministic and probabilistic automata as well as pushdown and linear bounded automata, are treated as generalizations of this basic model. The formalism chosen to describe finite deterministic automata is that of regular expressions. A detailed exposition regarding this formalism is presented by considering the algebra of regular expressions. This volume is comprised of four chapters and begins with a discussion on finite deterministic automata, paying particular attention to regular and finite languages; analysis and synthesis theorems; equivalence relations induced by languages; sequential machines; sequential functions and relations; definite languages and non-initial automata; and two-way automata. The next chapter describes finite non-deterministic and probabilistic automata and covers theorems concerning stochastic languages; non-regular stochastic languages; and probabilistic sequential machines. The book then introduces the reader to the algebra of regular expressions before concluding with a chapter on formal languages and generalized automata. Theoretical exercises are included, along with ""problems"" at the end of some sections. This monograph will be a useful resource for beginning graduate or advanced undergraduates of mathematics.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.