Theorie der Limitierungsverfahren

· Springer-Verlag
Carte electronică
242
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Herrn Professor F. K. SCHMIDT und dem Verlag danke ich, daß sie dieses Buch anregten und in die Sammlung "Ergebnisse der Mathematik" aufnahmen, obwohl es sich von andern Bänden der Sammlung stark unterscheidet. Die Limitierungstheorie ist nämlich so weit verzweigt, die Literatur so umfangreich, daß es mir nicht möglich war, eine abge schlossene Darstellung zu geben. Der Bericht verfolgt den bescheideneren Zweck, den Leser an die Literatur heranzuführen und ihm eigene Arbeiten zu erleichtern. In erster Linie betrachte ich Matrixtransformationen gewöhnlicher Zahlenfolgen und die zugehörigen Limitierungsverfahren. Allgemeine Aussagen werden betont, spezielle Verfahren verhältnismäßig kurz be handelt; der Aufbau des Buches ist wesentlich bestimmt durch die grund legenden funktionalanalytischen Untersuchungen von S. MAZUR und W.ORLICZ. Auf die Anwendungen der Limitierung konnte ich nur am Rande eingehen. Es bedeutete einen unschätzbaren Vorteil, daß ich in den hiesigen Bibliotheken fast alle benötigten Zeitschriften zur Verfügung hatte. Herr Professor J. E. HOFMANN half bei der Abfassung des Abschnittes über Geschichte der Limitierung. Herr Professor W. MEYER-KöNIG und Herr Dozent D. GAIER gaben mir zahlreiche wertvolle Ratschläge. Vor allem aber gilt mein Dank meinen verehrten Lehrern, deren Einfluß überall in diesem Buche hervortritt: K. KNOPP t und G. LORENTZ. Tübingen, im Herbst 1956 Karl Zeller Inhaltsverzeichnis Seite Einleitung . . . . . . . 1 Erstes Kapitel Grundbegriffe der Limitierung 1. Zusammenfassung. . . . . . . . 2 2. Geschichte der Limitierungstheorie 2 3. Allgemeine Limitierungstheorie . 3 4. Matrixverfahren 6 5. Hauptprobleme . . . . .

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.