Theorie der Limitierungsverfahren

· Springer-Verlag
ebook
242
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

Herrn Professor F. K. SCHMIDT und dem Verlag danke ich, daß sie dieses Buch anregten und in die Sammlung "Ergebnisse der Mathematik" aufnahmen, obwohl es sich von andern Bänden der Sammlung stark unterscheidet. Die Limitierungstheorie ist nämlich so weit verzweigt, die Literatur so umfangreich, daß es mir nicht möglich war, eine abge schlossene Darstellung zu geben. Der Bericht verfolgt den bescheideneren Zweck, den Leser an die Literatur heranzuführen und ihm eigene Arbeiten zu erleichtern. In erster Linie betrachte ich Matrixtransformationen gewöhnlicher Zahlenfolgen und die zugehörigen Limitierungsverfahren. Allgemeine Aussagen werden betont, spezielle Verfahren verhältnismäßig kurz be handelt; der Aufbau des Buches ist wesentlich bestimmt durch die grund legenden funktionalanalytischen Untersuchungen von S. MAZUR und W.ORLICZ. Auf die Anwendungen der Limitierung konnte ich nur am Rande eingehen. Es bedeutete einen unschätzbaren Vorteil, daß ich in den hiesigen Bibliotheken fast alle benötigten Zeitschriften zur Verfügung hatte. Herr Professor J. E. HOFMANN half bei der Abfassung des Abschnittes über Geschichte der Limitierung. Herr Professor W. MEYER-KöNIG und Herr Dozent D. GAIER gaben mir zahlreiche wertvolle Ratschläge. Vor allem aber gilt mein Dank meinen verehrten Lehrern, deren Einfluß überall in diesem Buche hervortritt: K. KNOPP t und G. LORENTZ. Tübingen, im Herbst 1956 Karl Zeller Inhaltsverzeichnis Seite Einleitung . . . . . . . 1 Erstes Kapitel Grundbegriffe der Limitierung 1. Zusammenfassung. . . . . . . . 2 2. Geschichte der Limitierungstheorie 2 3. Allgemeine Limitierungstheorie . 3 4. Matrixverfahren 6 5. Hauptprobleme . . . . .

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.