A quasisymmetric mapping is a homeomorphism of the circle with the property that it does not distort cross ratios too badly. By a theorem of Beurling and Ahlfors such maps are precisely the boundary values of quasiconformal homeomorphisms of the disk. A group [italic]G of quasisymmetric mappings of the circle is called a quasisymmetric group if there is a uniform upper bound on the distortion of each [script lowercase]g in [italic]G. If this upper bound is [italic]K we call [italic]G a [italic]K-quasisymmetric group. In this paper the author continues the study of these groups, in particular the question of when such groups are quasisymmetrically conjugate to conformal groups.
Berikan rating untuk e-Buku ini
Beritahu kami pendapat anda.
Maklumat pembacaan
Telefon pintar dan tablet
Pasang apl Google Play Books untuk Android dan iPad/iPhone. Apl ini menyegerak secara automatik dengan akaun anda dan membenarkan anda membaca di dalam atau luar talian, walau di mana jua anda berada.
Komputer riba dan komputer
Anda boleh mendengar buku audio yang dibeli di Google Play menggunakan penyemak imbas web komputer anda.
eReader dan peranti lain
Untuk membaca pada peranti e-dakwat seperti Kobo eReaders, anda perlu memuat turun fail dan memindahkan fail itu ke peranti anda. Sila ikut arahan Pusat Bantuan yang terperinci untuk memindahkan fail ke e-Pembaca yang disokong.