The Ricci Flow: Techniques and Applications

· · · · · · · · ·
· Mathematical Surveys and Monographs 206. knjiga · American Mathematical Soc.
E-knjiga
374
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

Ricci flow is a powerful technique using a heat-type equation to deform Riemannian metrics on manifolds to better metrics in the search for geometric decompositions. With the fourth part of their volume on techniques and applications of the theory, the authors discuss long-time solutions of the Ricci flow and related topics.

In dimension 3, Perelman completed Hamilton's program to prove Thurston's geometrization conjecture. In higher dimensions the Ricci flow has remarkable properties, which indicates its usefulness to understand relations between the geometry and topology of manifolds. This book discusses recent developments on gradient Ricci solitons, which model the singularities developing under the Ricci flow. In the shrinking case there is a surprising rigidity which suggests the likelihood of a well-developed structure theory. A broader class of solutions is ancient solutions; the authors discuss the beautiful classification in dimension 2. In higher dimensions they consider both ancient and singular Type I solutions, which must have shrinking gradient Ricci soliton models. Next, Hamilton's theory of 3-dimensional nonsingular solutions is presented, following his original work. Historically, this theory initially connected the Ricci flow to the geometrization conjecture. From a dynamical point of view, one is interested in the stability of the Ricci flow. The authors discuss what is known about this basic problem. Finally, they consider the degenerate neckpinch singularity from both the numerical and theoretical perspectives.

This book makes advanced material accessible to researchers and graduate students who are interested in the Ricci flow and geometric evolution equations and who have a knowledge of the fundamentals of the Ricci flow.

 

O autoru

Bennett Chow, University of California, San Diego, La Jolla, CA, Sun-Chin Chu, National Chung Cheng University, Chia-Yi, Taiwan, David Glickenstein, University of Arizona, Tucson, AZ, Christine Guenther, Pacific University, Forest Grove, OR, James Isenberg, University of Oregon, Eugene, OR, Tom Ivey, The College of Charleston, SC, Dan Knopf, University of Texas at Austin, TX, Peng Lu, University of Oregon, Eugene, OR, Feng Luo, Rutgers University, Piscataway, NJ, and Lei Ni, University of California, San Diego, La Jolla, CA

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.