The Non-Euclidean Revolution

· Springer Science & Business Media
3,0
1 resensie
E-boek
270
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

How unique and definitive is Euclidean geometry in describing the "real" space in which we live?

Richard Trudeau confronts the fundamental question of truth and its representation through mathematical models in The Non-Euclidean Revolution. First, the author analyzes geometry in its historical and philosophical setting; second, he examines a revolution every bit as significant as the Copernican revolution in astronomy and the Darwinian revolution in biology; third, on the most speculative level, he questions the possibility of absolute knowledge of the world.

Trudeau writes in a lively, entertaining, and highly accessible style. His book provides one of the most stimulating and personal presentations of a struggle with the nature of truth in mathematics and the physical world. A portion of the book won the Pólya Prize, a distinguished award from the Mathematical Association of America.

"Trudeau meets the challenge of reaching a broad audience in clever ways...(The book) is a good addition to our literature on non-Euclidean geometry and it is recommended for the undergraduate library."--Choice (review of 1st edition)

"...the author, in this remarkable book, describes in an incomparable way the fascinating path taken by the geometry of the plane in its historical evolution from antiquity up to the discovery of non-Euclidean geometry. This 'non-Euclidean revolution', in all its aspects, is described very strikingly here...Many illustrations and some amusing sketches complement the very vividly written text."--Mathematical Reviews

Graderings en resensies

3,0
1 resensie

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.