The Arithmetic of Dynamical Systems

· Graduate Texts in Mathematics Book 241 · Springer Science & Business Media
eBook
511
Pages
Ratings and reviews aren’t verified  Learn more

About this eBook

This book is designed to provide a path for the reader into an amalgamation oftwo venerable areas ofmathematics, Dynamical Systems and Number Theory. Many of the motivating theorems and conjectures in the new subject of Arithmetic Dynamics may be viewed as the transposition ofclassical results in the theory ofDiophantine equations to the setting of discrete dynamical systems, especially to the iteration theory ofmaps on the projective line and other algebraic varieties. Although there is no precise dictionary connecting the two areas, the reader will gain a flavor of the correspondence from the following associations: Diophantine Equations Dynamical Systems rational and integral rational and integral points on varieties points in orbits torsion points on periodic and preperiodic abelian varieties points ofrational maps There are a variety of topics covered in this volume, but inevitably the choice reflects the author's tastes and interests. Many related areas that also fall under the heading ofarithmetic or algebraic dynamics have been omitted in order to keep the book to a manageable length. A brief list of some of these omitted topics may be found in the introduction. Online Resources The reader will find additonal material, references and errata at http://www. math. brown. ectu/-jhs/ADSHome. html Acknowledgments The author has consulted a great many sources in writing this book. Every attempt has been made to give proper attribution for all but the most standard results.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.