Tables of Bessel Transforms

· Springer Science & Business Media
E-book
290
Páginas
As notas e avaliações não são verificadas Saiba mais

Sobre este e-book

This material represents a collection of integral tra- forms involving Bessel (or related) functions as kernel. The following types of inversion formulas have been singled out. k I. g(y) = f (x) (xy) 2J (xy) dx J V 0 k I' . f (x) g (y) (xy) 2J (xy) dy J V 0 II. g(y) f(x) (XY)~K (xy)dx J v 0 c+ioo k 1 II'. f (x) = g (y) (xy) 2 [Iv (xy) + I_v(xy)]dy J 27fT c-ioo or also c+ioo k 1 II". f(x) = g (y) (xy) 2Iv (xy) dx J rri oo c-i k III. g(y) f(x) (xy) 2y (xy) dx + J v 0 k III' . f(x) g(y) (xy) "1lv (xy) dy J 0 k IV. g(y) f (x) (xy) "Kv (xy) dx J 0 k g(y) (xy) 2Y (xy)dy IV' - f(x) J v 0 V Preface V. g(y) f(X)Kix(y)dx J 0 -2 -1 sinh (7TX) V'. f(x) 27T x g(y)y Kix(y)dy J 0 21-~[r(~~+~-~v)r(~~+~+~v)]-1 VI. g(y) . J f (x) (xy) ~s (xy) dx o ~, v l-~ -1 VI' . f(x) 2 [r (~~+~-~v) r (~~+~+~v)] - - J -5 (xy)]dy g(y) (XY)~[S~, v(xy) ~, v 0 [xy)~]dX VII. g(y) f(x)\ ~ J 0 0 VII' - f(x) g(y) \ [(xy) lz]dy ~ f 0 0 with \ (z) o (For notations and definitions see the appendix of this book.) The transform VII is also known as the divisor transform.

Avaliar este e-book

Diga o que você achou

Informações de leitura

Smartphones e tablets
Instale o app Google Play Livros para Android e iPad/iPhone. Ele sincroniza automaticamente com sua conta e permite ler on-line ou off-line, o que você preferir.
Laptops e computadores
Você pode ouvir audiolivros comprados no Google Play usando o navegador da Web do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos de e-ink como os e-readers Kobo, é necessário fazer o download e transferir um arquivo para o aparelho. Siga as instruções detalhadas da Central de Ajuda se quiser transferir arquivos para os e-readers compatíveis.