Sustainable Farming through Machine Learning: Enhancing Productivity and Efficiency

· · ·
· CRC Press
电子书
300
符合条件
评分和评价未经验证  了解详情

关于此电子书

This book explores the transformative potential of machine learning (ML) technologies in agriculture. It delves into specific applications, such as crop monitoring, disease detection, and livestock management, demonstrating how artificial intelligence/machine learning (AI/ML) can optimize resource management and improve overall productivity in farming practices.

Sustainable Farming through Machine Learning: Enhancing Productivity and Efficiency provides an in-depth overview of AI and ML concepts relevant to the agricultural industry. It discusses the challenges faced by the agricultural sector and how AI/ML can address them. The authors highlight the use of AI/ML algorithms for plant disease and pest detection and examine the role of AI/ML in supply chain management and demand forecasting in agriculture. It includes an examination of the integration of AI/ML with agricultural robotics for automation and efficiency. The authors also cover applications in livestock management, including feed formulation and disease detection; they also explore the use of AI/ML for behavior analysis and welfare assessment in livestock. Finally, the authors also explore the ethical and social implications of using such technologies.

This book can be used as a textbook for students in agricultural engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in machine learning, and deep learning working on sustainable agriculture applications.

作者简介

Suneeta Satpathy, PhD, is an Associate Professor in the Center for AI & ML, Siksha ‘O’ Anusandhan (Deemed to be) University, Odisha, India. Her research interests include computer forensics, cyber security, data fusion, data mining, big data analysis, decision mining, and machine learning. She has published papers in many international journals and conferences in repute. She has two Indian patents to her credit and is a member of IEEE, CSI, ISTE, OITS, and IE.

Bijay Kumar Paikaray, PhD, is an Associate Professor at the Center for Data Science, Siksha ‘O’ Anusandhan (Deemed to be) University, Odisha. His interests include high- performance computing, information security, machine learning, and IoT.

Ming Yang has a PhD in Computer Science from Wright State University, Dayton, Ohio, US, 2006. Currently he is a Professor in the College of Computing and Software Engineering Kennesaw State University, GA, USA. His research interests include multimedia communication, digital image/ video processing, computer vision, and machine learning.

Arunkumar Balakrishnan, PhD, holds the position of Assistant Professor Senior Grade in the Computer Science and Engineering department at VIT- AP University. He obtained his PhD in Information Science and Engineering from Anna University, Chennai. He possesses 12 years of academic expertise and an additional 6 years of concurrent research experience in the domains of Cryptography, Medical Image Security, Blockchain, and NFT. His research interests encompass Cryptography, Network Security, Medical Image Encryption, Blockchain, lightweight cryptography methods, and NFT.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。