Submanifolds and Holonomy: Edition 2

· ·
· Chapman & Hall/CRC Monographs and Research Notes in Mathematics Boek 21 · CRC Press
E-boek
494
Pagina's
Geschikt
Beoordelingen en reviews worden niet geverifieerd. Meer informatie

Over dit e-boek

Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom

Over de auteur

Jurgen Berndt is a professor of mathematics at King's College London. He is the author of two research monographs and more than 50 research articles. His research interests encompass geometrical problems with algebraic, analytic, or topological aspects, particularly the geometry of submanifolds, curvature of Riemannian manifolds, geometry of homogeneous manifolds, and Lie group actions on manifolds. He earned a PhD from the University of Cologne.

Sergio Console (1965-2013) was a researcher in the Department of Mathematics at the University of Turin. He was the author or coauthor of more than 30 publications. His research focused on differential geometry and algebraic topology.

Carlos Enrique Olmos is a professor of mathematics at the National University of Cordoba and principal researcher at the Argentine Research Council (CONICET). He is the author of more than 35 research articles. His research interests include Riemannian geometry, geometry of submanifolds, submanifolds, and holonomy. He earned a PhD from the National University of Cordoba.

Dit e-boek beoordelen

Geef ons je mening.

Informatie over lezen

Smartphones en tablets
Installeer de Google Play Boeken-app voor Android en iPad/iPhone. De app wordt automatisch gesynchroniseerd met je account en met de app kun je online of offline lezen, waar je ook bent.
Laptops en computers
Via de webbrowser van je computer kun je luisteren naar audioboeken die je hebt gekocht op Google Play.
eReaders en andere apparaten
Als je wilt lezen op e-ink-apparaten zoals e-readers van Kobo, moet je een bestand downloaden en overzetten naar je apparaat. Volg de gedetailleerde instructies in het Helpcentrum om de bestanden over te zetten op ondersteunde e-readers.