Submanifolds and Holonomy: Edition 2

· ·
· Chapman & Hall/CRC Monographs and Research Notes in Mathematics 21-китеп · CRC Press
Электрондук китеп
494
Барактар
Кошсо болот
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom

Автор жөнүндө

Jurgen Berndt is a professor of mathematics at King's College London. He is the author of two research monographs and more than 50 research articles. His research interests encompass geometrical problems with algebraic, analytic, or topological aspects, particularly the geometry of submanifolds, curvature of Riemannian manifolds, geometry of homogeneous manifolds, and Lie group actions on manifolds. He earned a PhD from the University of Cologne.

Sergio Console (1965-2013) was a researcher in the Department of Mathematics at the University of Turin. He was the author or coauthor of more than 30 publications. His research focused on differential geometry and algebraic topology.

Carlos Enrique Olmos is a professor of mathematics at the National University of Cordoba and principal researcher at the Argentine Research Council (CONICET). He is the author of more than 35 research articles. His research interests include Riemannian geometry, geometry of submanifolds, submanifolds, and holonomy. He earned a PhD from the National University of Cordoba.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.