Sub-Riemannian Geometry

·
· Progress in Mathematics Bok 144 · Birkhäuser
1,0
1 anmeldelse
E-bok
398
Sider
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: • control theory • classical mechanics • Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) • diffusion on manifolds • analysis of hypoelliptic operators • Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: • André Bellaïche: The tangent space in sub-Riemannian geometry • Mikhael Gromov: Carnot-Carathéodory spaces seen from within • Richard Montgomery: Survey of singular geodesics • Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers • Jean-Michel Coron: Stabilization of controllable systems.

Vurderinger og anmeldelser

1,0
1 anmeldelse

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.