Stochastic Integration and Differential Equations: A New Approach

· Stochastic Modelling and Applied Probability Ibhuku elingu-21 · Springer Science & Business Media
I-Ebook
302
Amakhasi
Izilinganiso nezibuyekezo aziqinisekisiwe  Funda Kabanzi

Mayelana nale ebook

The idea of this book began with an invitation to give a course at the Third Chilean Winter School in Probability and Statistics, at Santiago de Chile, in July, 1984. Faced with the problem of teaching stochastic integration in only a few weeks, I realized that the work of C. Dellacherie [2] provided an outline for just such a pedagogic approach. I developed this into aseries of lectures (Protter [6]), using the work of K. Bichteler [2], E. Lenglart [3] and P. Protter [7], as well as that of Dellacherie. I then taught from these lecture notes, expanding and improving them, in courses at Purdue University, the University of Wisconsin at Madison, and the University of Rouen in France. I take this opportunity to thank these institut ions and Professor Rolando Rebolledo for my initial invitation to Chile. This book assumes the reader has some knowledge of the theory of stochastic processes, including elementary martingale theory. While we have recalled the few necessary martingale theorems in Chap. I, we have not provided proofs, as there are already many excellent treatments of martingale theory readily available (e. g. , Breiman [1], Dellacherie-Meyer [1,2], or Ethier Kurtz [1]). There are several other texts on stochastic integration, all of which adopt to some extent the usual approach and thus require the general theory. The books of Elliott [1], Kopp [1], Metivier [1], Rogers-Williams [1] and to a much lesser extent Letta [1] are examples.

Nikeza le ebook isilinganiso

Sitshele ukuthi ucabangani.

Ulwazi lokufunda

Amasmathifoni namathebulethi
Faka uhlelo lokusebenza lwe-Google Play Amabhuku lwe-Android ne-iPad/iPhone. Livunyelaniswa ngokuzenzakalela ne-akhawunti yakho liphinde likuvumele ukuthi ufunde uxhunywe ku-inthanethi noma ungaxhunyiwe noma ngabe ukuphi.
Amakhompyutha aphathekayo namakhompyutha
Ungalalela ama-audiobook athengwe ku-Google Play usebenzisa isiphequluli sewebhu sekhompuyutha yakho.
Ama-eReaders namanye amadivayisi
Ukuze ufunde kumadivayisi e-e-ink afana ne-Kobo eReaders, uzodinga ukudawuniloda ifayela futhi ulidlulisele kudivayisi yakho. Landela imiyalelo Yesikhungo Sosizo eningiliziwe ukuze udlulise amafayela kuma-eReader asekelwayo.