Stochastic Integration and Differential Equations: A New Approach

· Stochastic Modelling and Applied Probability Buku 21 · Springer Science & Business Media
eBook
302
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

The idea of this book began with an invitation to give a course at the Third Chilean Winter School in Probability and Statistics, at Santiago de Chile, in July, 1984. Faced with the problem of teaching stochastic integration in only a few weeks, I realized that the work of C. Dellacherie [2] provided an outline for just such a pedagogic approach. I developed this into aseries of lectures (Protter [6]), using the work of K. Bichteler [2], E. Lenglart [3] and P. Protter [7], as well as that of Dellacherie. I then taught from these lecture notes, expanding and improving them, in courses at Purdue University, the University of Wisconsin at Madison, and the University of Rouen in France. I take this opportunity to thank these institut ions and Professor Rolando Rebolledo for my initial invitation to Chile. This book assumes the reader has some knowledge of the theory of stochastic processes, including elementary martingale theory. While we have recalled the few necessary martingale theorems in Chap. I, we have not provided proofs, as there are already many excellent treatments of martingale theory readily available (e. g. , Breiman [1], Dellacherie-Meyer [1,2], or Ethier Kurtz [1]). There are several other texts on stochastic integration, all of which adopt to some extent the usual approach and thus require the general theory. The books of Elliott [1], Kopp [1], Metivier [1], Rogers-Williams [1] and to a much lesser extent Letta [1] are examples.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.