Stirling Numbers

· Selected Chapters Of Number Theory: Special Numbers 3권 · World Scientific
eBook
468
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Stirling numbers are one of the most known classes of special numbers in Mathematics, especially in Combinatorics and Algebra. They were introduced by Scottish mathematician James Stirling (1692-1770) in his most important work, Differential Method with a Tract on Summation and Interpolation of Infinite Series (1730). Stirling numbers have a rich history; many arithmetic, number-theoretical, analytical and combinatorial connections; numerous classical properties; as well as many modern applications.This book collects much of the scattered material on the two subclasses of Stirling numbers to provide a holistic overview of the topic. From the combinatorial point of view, Stirling numbers of the second kind, S(n, k), count the number of ways to partition a set of n different objects (i.e., a given n-set) into k non-empty subsets. Stirling numbers of the first kind, s(n, k), give the number of permutations of n elements with k disjoint cycles. Both subclasses of Stirling numbers play an important role in Algebra: they form the coefficients, connecting well-known sets of polynomials.This book is suitable for students and professionals, providing a broad perspective of the theory of this class of special numbers, and many generalisations and relatives of Stirling numbers, including Bell numbers and Lah numbers. Throughout the book, readers are provided exercises to test and cement their understanding.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.