Markov Processes: Characterization and Convergence

· John Wiley & Sons
Ebook
552
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists.

"[A]nyone who works with Markov processes whose state space is uncountably infinite will need this most impressive book as a guide and reference."
-American Scientist

"There is no question but that space should immediately be reserved for [this] book on the library shelf. Those who aspire to mastery of the contents should also reserve a large number of long winter evenings."
-Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts

"Ethier and Kurtz have produced an excellent treatment of the modern theory of Markov processes that [is] useful both as a reference work and as a graduate textbook."
-Journal of Statistical Physics

Markov Processes presents several different approaches to proving weak approximation theorems for Markov processes, emphasizing the interplay of methods of characterization and approximation. Martingale problems for general Markov processes are systematically developed for the first time in book form. Useful to the professional as a reference and suitable for the graduate student as a text, this volume features a table of the interdependencies among the theorems, an extensive bibliography, and end-of-chapter problems.

About the author

STEWART N. ETHIER, PhD, is Professor of Mathematics at the University of Utah. He received his PhD in mathematics at the University of Wisconsin Madison.

THOMAS G. KURTZ, PhD, is Professor of Mathematics and Statistics at the University of Wisconsin Madison. He is a Book Review Editor for The Annals of Probability and the author of Approximation of Population Processes. Dr. Kurtz obtained his PhD in mathematics at Stanford University.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.