Statistics on Special Manifolds

· Lecture Notes in Statistics Kitab 174 · Springer Science & Business Media
4,0
4 rəy
E-kitab
403
Səhifələr
Reytinqlər və rəylər doğrulanmır  Ətraflı Məlumat

Bu e-kitab haqqında

The special manifolds of interest in this book are the Stiefel manifold and the Grassmann manifold. Formally, the Stiefel manifold Vk,m is the space of k frames in the m-dimensional real Euclidean space Rm, represented by the set of m x k matrices X such that X' X = I , where Ik is the k x k identity matrix, k and the Grassmann manifold Gk,m-k is the space of k-planes (k-dimensional hyperplanes) in Rm. We see that the manifold Pk,m-k of m x m orthogonal projection matrices idempotent of rank k corresponds uniquely to Gk,m-k. This book is concerned with statistical analysis on the manifolds Vk,m and Pk,m-k as statistical sample spaces consisting of matrices. The discussion is carried out on the real spaces so that scalars, vectors, and matrices treated in this book are all real, unless explicitly stated otherwise. For the special case k = 1, the observations from V1,m and G1,m-l are regarded as directed vectors on a unit sphere and as undirected axes or lines, respectively. There exists a large literature of applications of directional statis tics and its statistical analysis, mostly occurring for m = 2 or 3 in practice, in the Earth (or Geological) Sciences, Astrophysics, Medicine, Biology, Meteo rology, Animal Behavior, and many other fields. Examples of observations on the general Grassmann manifold Gk,m-k arise in the signal processing of radar with m elements observing k targets.

Reytinqlər və rəylər

4,0
4 rəy

Bu e-kitabı qiymətləndirin

Fikirlərinizi bizə deyin

Məlumat oxunur

Smartfonlar və planşetlər
AndroidiPad/iPhone üçün Google Play Kitablar tətbiqini quraşdırın. Bu hesabınızla avtomatik sinxronlaşır və harada olmağınızdan asılı olmayaraq onlayn və oflayn rejimdə oxumanıza imkan yaradır.
Noutbuklar və kompüterlər
Kompüterinizin veb brauzerini istifadə etməklə Google Play'də alınmış audio kitabları dinləyə bilərsiniz.
eReader'lər və digər cihazlar
Kobo eReaders kimi e-mürəkkəb cihazlarında oxumaq üçün faylı endirməli və onu cihazınıza köçürməlisiniz. Faylları dəstəklənən eReader'lərə köçürmək üçün ətraflı Yardım Mərkəzi təlimatlarını izləyin.