Statistical Regression and Classification: From Linear Models to Machine Learning

· CRC Press
电子书
528
符合条件
评分和评价未经验证  了解详情

关于此电子书

This text provides a modern introduction to regression and classification with an emphasis on big data and R. Each chapter is partitioned into a main body section and an extras section. The main body uses math stat very sparingly and always in the context of something concrete, which means that readers can skip the math stat content entirely if they wish. The extras section is for those who feel comfortable with analysis using math stat.

作者简介

Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. Statistical Regression and Classification: From Linear Models to Machine Learning was awarded the 2017 Ziegel Award for the best book reviewed in Technometrics in 2017. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。