Stable Homotopy over the Steenrod Algebra

· American Mathematical Society: Memoirs of the American Mathematical Society 716권 · American Mathematical Soc.
eBook
172
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This title applys the tools of stable homotopy theory to the study of modules over the mod $p$ Steenrod algebra $A DEGREES{*}$. More precisely, let $A$ be the dual of $A DEGREES{*}$; then we study the category $\mathsf{stable}(A)$ of unbounded cochain complexes of injective comodules over $A$, in which the morphisms are cochain homotopy classes of maps. This category is triangulated. Indeed, it is a stable homotopy category, so we can use Brown representability, Bousfield localization, Brown-Comenetz duality, and other homotopy-theoretic tools to study it. One focus of attention is the analogue of the stable homotopy groups of spheres, which in this setting is the cohomology of $A$, $\mathrm{Ext}_A DEGREES{**}(\mathbf{F}_p, \mathbf{F}_p)$. This title also has nilpotence theorems, periodicity theorems, a convergent chromatic tower, and a nu

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.