Solving Diophantine Equations

· Infinite Study
3,0
2 сын-пикир
Электрондук китеп
254
Барактар
Кошсо болот
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

In this book a multitude of Diophantine equations and their partial or complete solutions are presented. How should we solve, for example, the equation η(π(x)) = π(η(x)), where η is the Smarandache function and π is Riemann function of counting the number of primes up to x, in the set of natural numbers?

If an analytical method is not available, an idea would be to recall the empirical search for solutions. We establish a domain of searching for the solutions and then we check all possible situations, and of course we retain among them only those solutions that verify our equation.

In other words, we say that the equation does not have solutions in the search domain, or the equation has n solutions in this domain. This mode of solving is called partial resolution. Partially solving a Diophantine equation may be a good start for a complete solving of the problem.

The authors have identified 62 Diophantine equations that impose such approach and they partially solved them. For an efficient resolution it was necessarily that they have constructed many useful ”tools” for partially solving the Diophantine equations into a reasonable time.

The computer programs as tools were written in Mathcad, because this is a good mathematical software where many mathematical functions are implemented. Transposing the programs into another computer language is facile, and such algorithms can be turned to account on other calculation systems with various processors.

 

Баалар жана сын-пикирлер

3,0
2 сын-пикир

Автор жөнүндө

 

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.