Solving Diophantine Equations

· Infinite Study
3,0
2 ulasan
eBook
254
Halaman
Memenuhi syarat
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

In this book a multitude of Diophantine equations and their partial or complete solutions are presented. How should we solve, for example, the equation η(π(x)) = π(η(x)), where η is the Smarandache function and π is Riemann function of counting the number of primes up to x, in the set of natural numbers?

If an analytical method is not available, an idea would be to recall the empirical search for solutions. We establish a domain of searching for the solutions and then we check all possible situations, and of course we retain among them only those solutions that verify our equation.

In other words, we say that the equation does not have solutions in the search domain, or the equation has n solutions in this domain. This mode of solving is called partial resolution. Partially solving a Diophantine equation may be a good start for a complete solving of the problem.

The authors have identified 62 Diophantine equations that impose such approach and they partially solved them. For an efficient resolution it was necessarily that they have constructed many useful ”tools” for partially solving the Diophantine equations into a reasonable time.

The computer programs as tools were written in Mathcad, because this is a good mathematical software where many mathematical functions are implemented. Transposing the programs into another computer language is facile, and such algorithms can be turned to account on other calculation systems with various processors.

 

Rating dan ulasan

3,0
2 ulasan

Tentang pengarang

 

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.