Singular Unitary Representations and Discrete Series for Indefinite Stiefel Manifolds $U(p,q;{\mathbb F})/U(p-m,q;{\mathbb F})$

· American Mathematical Soc.
Rafbók
106
Síður
Einkunnir og umsagnir eru ekki staðfestar  Nánar

Um þessa rafbók

Interesting classes of (g, K)-modules are often described naturally in terms of cohomologically induced representations in various settings, such as unitary highest weight modules, the theory of dual reductive pairs, discrete series for semisimple theory of dual reductive pairs, discrete series for semisimple symmetric spaces, etc. These have been stimulating the study of algebraic properties of derived functor modules. Now an almost satisfactory theory on derived functor modules, including a functorial property about unitarizability, has been developed in the good range of parameters, though some subtle problems still remain. This work treats a relatively singular part of the unitary dual of pseudo-orthogonal groups U(p, q;F) over F = R, C and H. These representations arise from discrete series for indefinite Stiefel manifolds U(p, q;F)/U(p - m, q, F)(2m 4p). Thanks to the duality theorem between d-module construction and Zuckerman's derived functor modules (ZDF-modules), these discrete series are naturally described in terms of ZF-modules with possibly singular parameters. The author's approach is algebraic and covers some parameters wandering outside the canonical Weyl cha

Gefa þessari rafbók einkunn.

Segðu okkur hvað þér finnst.

Upplýsingar um lestur

Snjallsímar og spjaldtölvur
Settu upp forritið Google Play Books fyrir Android og iPad/iPhone. Það samstillist sjálfkrafa við reikninginn þinn og gerir þér kleift að lesa með eða án nettengingar hvar sem þú ert.
Fartölvur og tölvur
Hægt er að hlusta á hljóðbækur sem keyptar eru í Google Play í vafranum í tölvunni.
Lesbretti og önnur tæki
Til að lesa af lesbrettum eins og Kobo-lesbrettum þarftu að hlaða niður skrá og flytja hana yfir í tækið þitt. Fylgdu nákvæmum leiðbeiningum hjálparmiðstöðvar til að flytja skrár yfir í studd lesbretti.