Singular Points of Complex Hypersurfaces

· Princeton University Press
Էլ. գիրք
130
Էջեր
Կարելի է ավելացնել
Գնահատականները և կարծիքները չեն ստուգվում  Իմանալ ավելին

Այս էլ․ գրքի մասին

Fields Medal–winning mathematician John Milnor’s classic treatment of singular points of complex hypersurfaces

One of the greatest mathematicians of the twentieth century, John Milnor has made fundamental discoveries in diverse areas of mathematics, from topology and dynamical systems to algebraic K-theory. He is renowned as a master of mathematical exposition and his many books have become standard references in the field. Singular Points of Complex Hypersurfaces provides an incisive and authoritative study of the local behavior of a complex hypersurface V in Euclidean space at a singularity Z0.

Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition into the twenty-first century as Princeton looks forward to publishing the major works of the new millennium.

Հեղինակի մասին

John Milnor is professor of mathematics and codirector of the Institute for Mathematical Sciences at Stony Brook University, State University of New York. Winner of the Fields Medal, he is the author of several books, including Lectures on the H-Cobordism Theorem (Princeton).

Գնահատեք էլ․ գիրքը

Կարծիք հայտնեք։

Տեղեկություններ

Սմարթֆոններ և պլանշետներ
Տեղադրեք Google Play Գրքեր հավելվածը Android-ի և iPad/iPhone-ի համար։ Այն ավտոմատ համաժամացվում է ձեր հաշվի հետ և թույլ է տալիս կարդալ առցանց և անցանց ռեժիմներում:
Նոթբուքներ և համակարգիչներ
Դուք կարող եք լսել Google Play-ից գնված աուդիոգրքերը համակարգչի դիտարկիչով:
Գրքեր կարդալու սարքեր
Գրքերը E-ink տեխնոլոգիան աջակցող սարքերով (օր․՝ Kobo էլեկտրոնային ընթերցիչով) կարդալու համար ներբեռնեք ֆայլը և այն փոխանցեք ձեր սարք։ Մանրամասն ցուցումները կարող եք գտնել Օգնության կենտրոնում։