Set Theory: Edition 2

· Springer Science & Business Media
3,0
1 κριτική
ebook
634
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

The main body of this book consists of 106 numbered theorems and a dozen of examples of models of set theory. A large number of additional results is given in the exercises, which are scattered throughout the text. Most exer cises are provided with an outline of proof in square brackets [ ], and the more difficult ones are indicated by an asterisk. I am greatly indebted to all those mathematicians, too numerous to men tion by name, who in their letters, preprints, handwritten notes, lectures, seminars, and many conversations over the past decade shared with me their insight into this exciting subject. XI CONTENTS Preface xi PART I SETS Chapter 1 AXIOMATIC SET THEORY I. Axioms of Set Theory I 2. Ordinal Numbers 12 3. Cardinal Numbers 22 4. Real Numbers 29 5. The Axiom of Choice 38 6. Cardinal Arithmetic 42 7. Filters and Ideals. Closed Unbounded Sets 52 8. Singular Cardinals 61 9. The Axiom of Regularity 70 Appendix: Bernays-Godel Axiomatic Set Theory 76 Chapter 2 TRANSITIVE MODELS OF SET THEORY 10. Models of Set Theory 78 II. Transitive Models of ZF 87 12. Constructible Sets 99 13. Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis 108 14. The In Hierarchy of Classes, Relations, and Functions 114 15. Relative Constructibility and Ordinal Definability 126 PART II MORE SETS Chapter 3 FORCING AND GENERIC MODELS 16. Generic Models 137 17. Complete Boolean Algebras 144 18.

Βαθμολογίες και αξιολογήσεις

3,0
1 αξιολόγηση

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.