Separation Axioms on Bipolar Hypersoft Topological Spaces

·
· HyperSoft Set 36. knjiga · Infinite Study
E-knjiga
16
Broj stranica
Prihvatljiva
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

According to its definition, a topological space could be a highly unexpected object. There are spaces (indiscrete space) which have only two open sets: the empty set and the entire space. In a discrete space, on the other hand, each set is open. These two artificial extremes are very rarely seen in actual practice. Most spaces in geometry and analysis fall somewhere between these two types of spaces. Accordingly, the separation axioms allow us to say with confidence whether a topological space contains a sufficient number of open sets to meet our needs. To this end, we use bipolar hypersoft (BHS) sets (one of the efficient tools to deal with ambiguity and vagueness) to define a new kind of separation axioms called BHS e Ti-space (i = 0, 1, 2, 3, 4). 

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.