Semisimpliziale algebraische Topologie

· Springer-Verlag
E-knjiga
288
Strani
Ocene in mnenja niso preverjeni. Več o tem

O tej e-knjigi

In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie : Man ordnet dem Raum X seine semi simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt.

Ocenite to e-knjigo

Povejte nam svoje mnenje.

Informacije o branju

Pametni telefoni in tablični računalniki
Namestite aplikacijo Knjige Google Play za Android in iPad/iPhone. Samodejno se sinhronizira z računom in kjer koli omogoča branje s povezavo ali brez nje.
Prenosni in namizni računalniki
Poslušate lahko zvočne knjige, ki ste jih kupili v Googlu Play v brskalniku računalnika.
Bralniki e-knjig in druge naprave
Če želite brati v napravah, ki imajo zaslone z e-črnilom, kot so e-bralniki Kobo, morate prenesti datoteko in jo kopirati v napravo. Podrobna navodila za prenos datotek v podprte bralnike e-knjig najdete v centru za pomoč.