Semigroups in Geometrical Function Theory

· Springer Science & Business Media
Libro electrónico
222
Páxinas
As valoracións e as recensións non están verificadas  Máis información

Acerca deste libro electrónico

Historically, complex analysis and geometrical function theory have been inten sively developed from the beginning of the twentieth century. They provide the foundations for broad areas of mathematics. In the last fifty years the theory of holomorphic mappings on complex spaces has been studied by many mathemati cians with many applications to nonlinear analysis, functional analysis, differential equations, classical and quantum mechanics. The laws of dynamics are usually presented as equations of motion which are written in the abstract form of a dy namical system: dx / dt + f ( x) = 0, where x is a variable describing the state of the system under study, and f is a vector function of x. The study of such systems when f is a monotone or an accretive (generally nonlinear) operator on the under lying space has been recently the subject of much research by analysts working on quite a variety of interesting topics, including boundary value problems, integral equations and evolution problems (see, for example, [19, 13] and [29]). In a parallel development (and even earlier) the generation theory of one parameter semigroups of holomorphic mappings in en has been the topic of interest in the theory of Markov stochastic processes and, in particular, in the theory of branching processes (see, for example, [63, 127, 48] and [69]).

Valora este libro electrónico

Dános a túa opinión.

Información de lectura

Smartphones e tabletas
Instala a aplicación Google Play Libros para Android e iPad/iPhone. Sincronízase automaticamente coa túa conta e permíteche ler contido en liña ou sen conexión desde calquera lugar.
Portátiles e ordenadores de escritorio
Podes escoitar os audiolibros comprados en Google Play a través do navegador web do ordenador.
Lectores de libros electrónicos e outros dispositivos
Para ler contido en dispositivos de tinta electrónica, como os lectores de libros electrónicos Kobo, é necesario descargar un ficheiro e transferilo ao dispositivo. Sigue as instrucións detalladas do Centro de Axuda para transferir ficheiros a lectores electrónicos admitidos.