Semidefinite Optimization and Convex Algebraic Geometry

· ·
· MOS-SIAM Series on Optimization 21. књига · SIAM
Е-књига
495
Страница
Испуњава услове
Оцене и рецензије нису верификоване  Сазнајте више

О овој е-књизи

This book provides a self-contained, accessible introduction to the mathematical advances and challenges resulting from the use of semidefinite programming in polynomial optimization. This quickly evolving research area with contributions from the diverse fields of convex geometry, algebraic geometry, and optimization is known as convex algebraic geometry. Each chapter addresses a fundamental aspect of convex algebraic geometry. The book begins with an introduction to nonnegative polynomials and sums of squares and their connections to semidefinite programming and quickly advances to several areas at the forefront of current research. These include (1) semidefinite representability of convex sets, (2) duality theory from the point of view of algebraic geometry, and (3) nontraditional topics such as sums of squares of complex forms and noncommutative sums of squares polynomials. Suitable for a class or seminar, with exercises aimed at teaching the topics to beginners, Semidefinite Optimization and Convex Algebraic Geometry serves as a point of entry into the subject for readers from multiple communities such as engineering, mathematics, and computer science. A guide to the necessary background material is available in the appendix.

Оцените ову е-књигу

Јавите нам своје мишљење.

Информације о читању

Паметни телефони и таблети
Инсталирајте апликацију Google Play књиге за Android и iPad/iPhone. Аутоматски се синхронизује са налогом и омогућава вам да читате онлајн и офлајн где год да се налазите.
Лаптопови и рачунари
Можете да слушате аудио-књиге купљене на Google Play-у помоћу веб-прегледача на рачунару.
Е-читачи и други уређаји
Да бисте читали на уређајима које користе е-мастило, као што су Kobo е-читачи, треба да преузмете фајл и пренесете га на уређај. Пратите детаљна упутства из центра за помоћ да бисте пренели фајлове у подржане е-читаче.