Scalable Pattern Recognition Algorithms: Applications in Computational Biology and Bioinformatics

·
· Springer Science & Business Media
Ebook
304
pagine
Valutazioni e recensioni non sono verificate  Scopri di più

Informazioni su questo ebook

Recent advances in high-throughput technologies have resulted in a deluge of biological information. Yet the storage, analysis, and interpretation of such multifaceted data require effective and efficient computational tools.

This unique text/reference addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The book reviews both established and cutting-edge research, following a clear structure reflecting the major phases of a pattern recognition system: classification, feature selection, and clustering. The text provides a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics.

Topics and features: reviews the development of scalable pattern recognition algorithms for computational biology and bioinformatics; integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography.

This important work will be of great use to graduate students and researchers in the fields of computer science, electrical and biomedical engineering. Researchers and practitioners involved in pattern recognition, machine learning, computational biology and bioinformatics, data mining, and soft computing will also find the book invaluable.

Informazioni sull'autore

Dr. Pradipta Maji is an Associate Professor in the Machine Intelligence Unit at the Indian Statistical Institute, Kolkata, India. Dr. Sushmita Paul is a Research Associate at the same institution.

Valuta questo ebook

Dicci cosa ne pensi.

Informazioni sulla lettura

Smartphone e tablet
Installa l'app Google Play Libri per Android e iPad/iPhone. L'app verrà sincronizzata automaticamente con il tuo account e potrai leggere libri online oppure offline ovunque tu sia.
Laptop e computer
Puoi ascoltare gli audiolibri acquistati su Google Play usando il browser web del tuo computer.
eReader e altri dispositivi
Per leggere su dispositivi e-ink come Kobo e eReader, dovrai scaricare un file e trasferirlo sul dispositivo. Segui le istruzioni dettagliate del Centro assistenza per trasferire i file sugli eReader supportati.