Integrable Systems and Algebraic Geometry: Volume 2

·
· London Mathematical Society Lecture Note Series Book 459 · Cambridge University Press
Ebook
537
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Created as a celebration of mathematical pioneer Emma Previato, this comprehensive book highlights the connections between algebraic geometry and integrable systems, differential equations, mathematical physics, and many other areas. The authors, many of whom have been at the forefront of research into these topics for the last decades, have all been influenced by Previato's research, as her collaborators, students, or colleagues. The diverse articles in the book demonstrate the wide scope of Previato's work and the inclusion of several survey and introductory articles makes the text accessible to graduate students and non-experts, as well as researchers. The articles in this second volume discuss areas related to algebraic geometry, emphasizing the connections of this central subject to integrable systems, arithmetic geometry, Riemann surfaces, coding theory and lattice theory.

About the author

Ron Donagi is Professor of Mathematics and Physics at the University of Pennsylvania. He works in algebraic geometry and string theory, and is a Fellow of the American Mathematical Society. He has written and edited several books, including Integrable Systems and Quantum Groups (2009).

Tony Shaska is Associate Professor in the Department of Mathematics at Oakland University, Michigan. He works in algebraic and arithmetic geometry with an emphasis on algebraic curves and their Jacobians, including arithmetic aspects. He is an active researcher and has edited many books including Computational Aspects of Algebraic Curves (2005), Advances in Coding Theory and Cryptography (2007), Advances on Superelliptic Curves and Their Applications (2015) and Algebraic Curves and Their Applications (2019). He has been Editor in Chief of the Albanian Journal of Mathematics since 2007.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.